Polyethyleneimine-capped silver nanoclusters for microRNA oligonucleotide delivery and bacterial inhibition

نویسندگان

  • Chunyuan Du
  • Haibo Yan
  • Jichao Liang
  • Ailing Luo
  • Lingqian Wang
  • Jing Zhu
  • Huayu Xiong
  • Yong Chen
چکیده

Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this paper, polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) were prepared for the purpose of microRNA (miRNA) delivery. The resultant PEI-AgNCs were characterized by a photoluminescence assay and transmission electron microscopy. A cytotoxicity assay showed that PEI-AgNCs exhibit relatively low cytotoxicity. Interestingly, PEI-AgNCs were confirmed to transfect miRNA mimics more effectively than PEI in HepG2 and 293A cells. In this regard, hsa-miR-21 or hsa-miR-221 mimics (miR-21/221m) were transported into HepG2 cells by using PEI-AgNCs. The miR-21/221 expression was determined post-transfection by quantitative real-time polymerase chain reaction. Compared with the negative control, PEI-AgNCs/miR-21/221m groups exhibited higher miR-21/221 levels. In addition, AgNCs endow PEI with stronger antibacterial activity, and this advantage provided PEI-AgNCs the potential to prevent bacterial contamination during the transfection process. Furthermore, we showed that PEI-AgNCs are viable nanomaterials for plain imaging of the cells by laser scanning confocal microscopy, indicating great potential as an ideal fluorescent probe to track the transfection behavior. These results demonstrated that PEI-AgNCs are promising and novel nonviral vectors for gene delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents.

Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable si...

متن کامل

A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters.

A specific resonance light scattering bioassay for homocysteine is developed on the basis of target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. The bioassay permits discriminating homocysteine from cysteine, glutathione and other amino acids, and allows sensitive and selective detection of homocysteine with a detection limit of 42 nM.

متن کامل

Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.

Picric acid (PA) explosive is a hazard to public safety and health, so the sensitive and selective detection of PA is very important. In the present work, polyethyleneimine stabilized Ag nanoclusters were successfully used for the sensitive and selective quantification of PA on the basis of fluorescence quenching. The quenching efficiency of Ag nanoclusters is proportional to the concentration ...

متن کامل

Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters.

An interesting, simple, and label-free strategy for the detection of hydrogen peroxide and glucose has been developed with polyethyleneimine (PEI)-capped copper nanoclusters as a fluorescence probe in aqueous solution. The PEI-templated Cu nanoclusters which we have synthesized have an average diameter of 1.8 nm and show a blue emission at 480 nm. In the presence of hydrogen peroxide, the fluor...

متن کامل

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles were studied. The effect of size on the properties, by capping silver (Ag) and gold (Au) nanoparticles by thiosemicarbazide (TSC) was investigated. The nanoparticles were synthesized by chemical reduction method. The structural formation, surface morphology, phase stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017